a2 United States Patent

US009270456B1

(10) Patent No.: US 9,270,456 B1

Galligan et al. (45) Date of Patent: *Feb. 23, 2016
(54) SYSTEM AND METHODOLOGY FOR (56) References Cited
DECRYPTING ENCRYPTED MEDIA U'S. PATENT DOCUMENTS
(71) Applicant: Google Inc., Mountain View, CA (US) 6,987,770 B1* 1/2006 Yonge, Ilc.ccooccrccc.. 370/401
7,149,901 B2 12/2006 Herbert et al.
. . . 7,274,792 B2 9/2007 Chin et al.
(72) Inventors: Francis Galligan, Clifton Pe}rk, NY 7:3 69: 662 B2 52008 Rell:lln il; tal
(US); Duncan MacLean, Kirkland, WA 7,602,908 B2 10/2009 Pare et al.
(Us) 7,876,897 B2* 12011 Yi oo, 380/44
7,979,693 B2* 7/2011 lidaetal. 713/153
. - 8,335,918 B2* 12/2012 Shonetal. .. . 713/160
(73) Assignee: Google Inc., Mountain View, CA (US) 8,538,021 B2* 9/2013 Okudacccocovvvveverenen. 380/259
2004/0247126 Al 12/2004 McClellan
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days.
. “MediaSampleAttributeKeys Enumeration,” http://msdn.microsoft.
Thl.s patent is subject to a terminal dis- com/en-us/library/system.windows.media.
claimer. mediasampleattributekeys%28v=vs.95%29.aspx, Last accessed
May 30, 2012.
(21) Appl. No.: 14/309,881 Office Action for U.S. Appl. No. 13/491,594, dated Oct. 19, 2012, 27
pages.
. Office Action for U.S. Appl. No. 13/491,594, dated May 2, 2013, 21
(22) Filed: Jun. 19, 2014 pages.
(Continued)
Related U.S. Application Data Primary Examiner — Amare F Tabor
(63) Continuation of application No. 13/491,594, filed on (74) Attorney, Agent, or Firm — Fenwick & West LLP
Jun. 7, 2012, now Pat. No. 8,792,643. (57) ABSTRACT
(60) Provisional application No. 61/599,903, filed on Feb. A system apd ?n?t.ho.d fqr decrypting encrypted. media that
16. 2012 have changing %m.tlahzat.lon vectors and keys is disclosed. As
’ ’ encrypted media is received and played back, the encrypted
frames can be monitored (e.g., checked) to detect whether or
(51) Int.ClL not initialization vectors are prepended to them. If a
HO4L 9/00 (2006.01) prepended initialization vector is detected, the prepended
HO4L 9/08 (2006.01) initialization vector is used to facilitate the decryption of the
HO4L 9/06 (2006.01) encrypted frame. If no prepended initialization vector is
HO4L 29/06 (2006.01) detected, a new initialization vector is generated by using a
(52) U.S.CL last portion of bytes of the preceding encrypted frame and the
CPC .. HO4L 9/088 (2013.01); HO4L 9/0637 new initialization vector is used to facilitate the decryption of
(2013.01); HO4L 9/0819 (2013.01); HO4L the encrypted frame. A signal byte can be included to signal
63/062 (2013.01) whether the frame is encrypted or not, whether an initializa-
(58) Field of Classification Search tion vector is included, and other information about the

USPC oo 380/278, 262, 28; 713/168, 189
See application file for complete search history.

encrypted frame.

20 Claims, 11 Drawing Sheets

SOH
302
ENCRYPTED FRAME
304—
INITIALIZATION INTRA FRAME 0
VECTOR 0 306
INITIALIZATION VECTOR |
10~ FRAME 308
MONITORING
COMPONENT ENCRYPTED FRAME
INTER FRAME 0
/—3 10
INITIALIZATION VECTOR 2
B GENERATION 312
COMPONENT [ENCRYPTED FRAME
INTER FRAME 1
124\ DECRYPTION s
COMPONENT 3 ENCRYPTED FRAME
INITIALIZATION INTRA FRAME 1 318
VECTOR 3 Y
[INITIALIZATION VECTOR 4 |

US 9,270,456 B1
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS Office Action for U.S. Appl. No. 13/491,594, dated Oct. 9, 2013, 20

2005/0195975 Al 9/2005 Kawakit pages.

2010/0014669 Al 1/2010 Jiznwg 2 Notice of Allowance for U.S. Appl. No. 13/491,594, dated Mar. 18,
2010/0098254 Al 4/2010 Chowdhary et al. 2014, 18 pages.

2011/0205433 Al* 82011 Altmann ... 348/513

2013/0202111 Al 82013 El Gamal et al. * cited by examiner

US 9,270,456 B1

Sheet 1 of 11

Feb. 23, 2016

U.S. Patent

["OIA

C0T INAITO

| 1£4! |
_HZmZOmzoo
_

NOILdA™Ddd |

ADVLS VIAIIN

wzl\ H

.\'Nﬁ

L

HAOVIOLS
/AJOWHIN

INTINOD |
AHLIANDNA

INAINOD
| ALdAEONA

J4OLS V1vd

801

901

p-| ATAYHS VIAHN

AOSSHO0Ud
4 ,(: I
i ;] .
SO , LNANOdINOD
S0 usmoanon | s\moion
L w|:l_ JANVIA
/(@# ! (N 11 /(3 !

(E:

L dIAYES AHA

(NH
V(cﬁ

US 9,270,456 B1

Sheet 2 of 11

Feb. 23, 2016

U.S. Patent

¢'OM

017

907

0T

[HINVIA MHINI CAOLIIA /(NS
NOLLVZITVILINI | 4
HNVY QHLdAIONH
0 TINVYA YAINT L OLIFA /mcn
NOILVZITVILINI |
VYA QHLdAIONH
0 SINVYA VIINI ZOWMWWWH\W . 0T
l————
HAVYA QHLdAIONH

LINANOJNOD
NOLLdAYDHU

(vu I

LINANOdNOD

> ONIFIOLINOW

JNVIA

o1t

R —o0z

US 9,270,456 B1

Sheet 3 of 11

Feb. 23, 2016

U.S. Patent

€ OId

t UOLIHA NOLLVZI IVLLINI
wﬁml\ € YOLDHA
T HIAVED VEINI NOILVZITVILINI |————
N—91¢
TNV QALIAIONA
14 8%
[TNVEL MAINI
ANVYA AALdAIONA
CIE
|\ TIOLDHA NOILVZI'TVILINI _
01¢ 0 ANVEA IAINT «——
TNV QLI AIONA
80¢ _
| AOLIDHA NOLLVZI' IVLLINI
©©M|\ 0 MOLDdA
‘ 0 ANV VIINI NOLLVZITVILINI |
; N—r0g
TNV ALdAIONA
°0¢

INANOJNOD
NOLLdAYDHd

INHNOJINOD
NOLLVIHNHD

INANOJIWOD

EEE— ONTIOLINON

HNVIA

1(==m

US 9,270,456 B1

Sheet 4 of 11

Feb. 23, 2016

U.S. Patent

ey "OId

0¢

fvl\

Evl\

c:ul\

LINANOJNOD
NOILdAYDId

INANOJINOD
NOLLVIINID

INAINOIINOD

wcvl\

<0

[HAVYA VLN AdLdAIINA ——————
£ MOLOUA NOLLVZITVILINI | HLAL TVNDIS
vuvl\ /(NNV
I HAVIA JAINT AHLd AYDNH]
HLAE TYNDIS
/(w 44
2 MOLDAA NOLLYZI TVLLINT
0 HWV YT YHLNI A4 LdATONH R —
ALAL TYNDIS
/(N 44
1 4OLDEA NOLLVZITVILINI
0 TNV VIINI AAdLdAIOINIT «
0MOLOEA NOILVZITVILINI | BLAE TVNDIS
wcvl\ /(vcw

ONIJOLINOW
dJINVYHA

\J

US 9,270,456 B1

Sheet 5 of 11

Feb. 23, 2016

U.S. Patent

qy "OI1d

143

(4%

0t

97

T HAVEA VIINI AHLdAIONA

£ JOLIFA NOILLVZITVILINI

HLAL TVNDIS

[HAVEA JHINT AHLdAIDNT

THOIDAA NOLLVZITVILINI

0 HAVEA dHINI dHLdAIINA

T JOLIHA NOLLVZITVILINI

0 HAVYA VILNI AHLdAEONA

0 JOLIOHA NOLLVZI' IVLILINI

HLAY "IVNDIS

LINUNOdWOD
NOILdAYDHd

INHNOJNOD
NOILVHINID

INHNOdINOD

—»| ONIUOLINOW

HNVIA

R —oor

US 9,270,456 B1

Sheet 6 of 11

Feb. 23, 2016

U.S. Patent

SO

805

90

14

s

1 AANVEd VILNI AHLdAIONH

A

i VIV
€ YOLOHA NOILVZITVILINI |

HIAY TVNDIS

v—ml\ N—ml\

s

1 ANV VALNI UHLdAUIDNH

_ AILAE TVNDIS

TUOLDHA NOLLVZITVILINI _

0 HNVYEL YHINI AHLdAIONH

ILAL TVNDIS

A

THOLIHA NOILVZI TVILINI _

0 JNVEA VILNI HLdAYONH

0 40LIIA NOILVZITVILINI

HLAL TVNDIS

LINANOdWOD
NOILJAYDHT

ININOJNOD
NOLLVIHNAD

INANOJINOD

> ONTIOLINOW

HAVUA

US 9,270,456 B1

Sheet 7 of 11

Feb. 23, 2016

U.S. Patent

9 "OId

91

v

o19—"

ec@l\

/(c:

70

T ANVEIA VIINI AILd XIDONA -
T AOLIDHA NOILLVZI'TVILINI HLAL TVNDIS
LNHNOdWOD
c@l\ (w 19 » NOILJAEDId
T ANV I JHINI AL XIDNA -
0 JOLDIA NOLLVZITVILINI ALAI TVYNDIS
p1o—" N—z19
0 NV A JdLNI AHIdAIDNAINN R —
ALAL TYNDIS LINANOdINOD
/(————p| HONDIOLINOW
809 ANV I
0 TNV VIINI AHLdAIONINN ———
TLAS TVNDIS
/(EE

US 9,270,456 B1

Sheet 8 of 11

Feb. 23, 2016

U.S. Patent

L0

0 TNV JALNI AL AN R
H1Ad LAY dLAH
IVNDIS | IVNDIS | "IVNDIS
Ebl\ /(cubrwﬁ ,(m:b
| dOLIHA NOLLVZI IVLLINI _
(4 FI\ <
0 IV VILINI AALdAIINA

0 JOLDHA NOLLVZI'TVILINI

HLAY dLAd dLAd
TYNDIS | TYNDIS | TYNDIS

0L

:FI\

,(wcb/(wcb /(EK.

INHNOdWOD
NOILdAYDHd

ININOdNOD
NOILVIHNHD

INANOINOD

— DNIYOLINOW

HINVHA

foh

U.S. Patent Feb. 23,2016 Sheet 9 of 11 US 9,270,456 B1

800
Y

802

MONITORING AN ENCRYPTED FRAME TO
DETERMINE IF AN INITIALIZATION VECTOR IS
PREPENDED TO THE ENCRYPTED FRAME

. '

GENERATING A NEW INITTIALIZATION VECTOR
USING A LAST PORTION OF DATA OF A PREVIOUS
ENCRYPTED FRAME IN RESPONSE TO
DETERMINING THAT AN INITIALIZATION VECTOR
IS NOT PREPENDED TO THE ENCRYPTED FRAME

. !

DECRYPTING THE ENCRYPTED FRAME WITH THE
INITIALIZATION VECTOR PREPENDED TO THE
ENCRYPTED FRAME IN RESPONSE TO
DETERMINING THAT THE INITIALIZATION VECTOR
IS PREPENDED TO THE ENCRYPTED FRAME

808 l

DECRYPTING THE ENCRYPTED FRAME WITH THE
NEW INITIALIZATION VECTOR IN RESPONSE TO
DETERMINING THAT THE INITIALIZATION VECTOR
ISNOT PREPENDED TO THE ENCRYPTED FRAME

FIG. 8

U.S. Patent Feb. 23,2016 Sheet 10 of 11 US 9,270,456 B1
954 ~_ _—952
. L : 900
| DEMUXER/MUXER | 1{ DECODER/ENCODER e
956 | X
DECRYPTER/ | | OPERATING SYSTEM |
N |
ENCRYPTER 3 30
| ' APPLICATIONS |
¥
———————————————— 932
| T gl
| | | MODULES |
| I .
! A = 934
: | iDATA; — o1
: "4
: ?&&mﬁ\ﬁg 914
! | PROCESSING |} 942
. \
| | ouNT | -
| - | H outrur Hg OUTPUT
| LR | | ADAPTER(S) H DEVICE(S)
| 916 C
| __p{ SYSTEM 938 940
| MEMORY /
INTERFACE |
I - < INPUT
| VOLATILE |}
| 920 PORT(S) DEVICE(S)
: NON N C
| VOLATILE 936
: 922 m\ 018
|) 950
! INTERFACE A 4 NETWORK
l N~ 926 || COMMUNICATION i, INTERFACE
| CONNECTION(S)
! \ o4
[DISK L~ 905 A 4
STORAGE | [PROGRAM REMOTE
COMPONENT COMPUTER(S)
924
MEMORY

STORAGE

FIG. 9

US 9,270,456 B1

Sheet 11 of 11

Feb. 23, 2016

U.S. Patent

01 "OId

0501

oror

(S)4UOLS
vivd
AAAYAS

(S)4AAFAS

hemcﬁ

MHIOMHINVEA
NOILVOINNWINOD

0701

(S)44OLS
vVIVd
INAITO

(S)INAITD

0001 |\

oro1—"

US 9,270,456 B1

1
SYSTEM AND METHODOLOGY FOR
DECRYPTING ENCRYPTED MEDIA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/491,594, filed Jun. 7, 2012, and entitled,
“SYSTEM AND METHODOLOGY FOR DECRYPTING
ENCRYPTED MEDIA,” and claims the benefit of U.S. Pro-
visional Application No. 61/599,903, filed Feb. 16,2012, and
entitted “SYSTEM AND METHODOLOGY FOR
DECRYPTING ENCRYPTED MEDIA.” The entireties of
each are incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates generally to encryption technology
and specifically to decrypting encrypted media.

BACKGROUND

In conventional systems, the bits of an initialization vector
for encrypted content are set to all Os or some other constant
number and do not change while playing back or streaming
the media. Repeating the initialization vector while using the
same key can allow attackers to infer relationships between
segments of the encrypted data and possibly decrypt the data.
Randomizing or pseudo-randomizing the initialization vector
enables the encryption scheme to be semantically secure,
making it difficult for the data to be illegitimately decrypted
using only the cipher text.

In stream ciphers, the initialization vectors can be loaded
into the key, after which a number of cipher rounds are
executed prior to releasing the first bit of output. Reducing the
number of rounds using the same initialization vector can
increase security as entropy loss and initialization vector
related attacks are a potential security issue for stream
ciphers. Changing the initialization vector frequently there-
fore also can increase security.

Changing the initialization vector requires that the initial-
ization vector change is signaled so that the media can be
decrypted using the new initialization vector. Signaling and
changing the initialization vector can add complexity to the
media stack, which can interfere with smooth streaming and
playback of media.

SUMMARY

The following presents a simplified summary of various
aspects of this disclosure in order to provide a basic under-
standing of such aspects. This summary is not an extensive
overview of all contemplated aspects, and is intended to nei-
ther identify key or critical elements nor delineate the scope
of'such aspects. Its purpose is to present some concepts of this
disclosure in a simplified form as a prelude to the more
detailed description that is presented later.

Systems and methods disclosed herein relate to decrypting
encrypted data that has changing initialization vectors. Dis-
closed herein is a system including a frame monitoring com-
ponent that monitors an encrypted frame to determine
whether the encrypted frame has an initialization vector
prepended to it or not. The system may also include a gen-
eration component that generates a new initialization vector
by using a last portion of data of a previous encrypted frame
if an initialization vector is not prepended to the frame. The
system may also include a decryption component that uses

15

20

25

40

45

2

the prepended initialization vector to decrypt the encrypted
frame, if available, or uses the new initialization vector to
decrypt the encrypted frame in response, if a prepended ini-
tialization vector is not available.

The frame monitoring component may also detect if a
signal byte has been prepended to a frame. Bits in the signal
byte can indicate that an additional signal byte follows the
signal byte, that the frame is encrypted, that key data follows
the signal byte, and/or that an initialization vector follows the
signal byte. Processing the signal byte minimizes complexity
in the media stack as the signal byte indicates information
about the frames, while reducing the number of components
in the media stack that have to know whether frames are
encrypted or not (e.g. a demuxer component) and therefore
can save processing time and bandwidth.

The following description and the annexed drawings set
forth in detail certain illustrative aspects of this disclosure.
These aspects are indicative, however, of but a few of the
various ways in which the principles of this disclosure may be
employed. This disclosure is intended to include all such
aspects and their equivalents. Other advantages and distinc-
tive features of this disclosure will become apparent from the
following detailed description of this disclosure when con-
sidered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example, non-
limiting embodiment of a system that can receive and present
media data in accordance with various aspects and implemen-
tations described herein.

FIG. 2 is a block diagram illustrating an example, non-
limiting embodiment of a system for decrypting encrypted
media data in accordance with various aspects and implemen-
tation described herein.

FIG. 3 is a block diagram illustrating an example, non-
limiting embodiment of a system for decrypting encrypted
media data in accordance with various aspects and implemen-
tations described herein.

FIG. 4a-4b are block diagrams illustrating an example,
non-limiting embodiment of a system for decrypting
encrypted media data in accordance with various aspects and
implementations described herein.

FIG. 5 is a block diagram illustrating an example, non-
limiting embodiment of a system for decrypting encrypted
media data in accordance with various aspects and implemen-
tations described herein.

FIG. 6 is a block diagram illustrating an example, non-
limiting embodiment of a system for decrypting encrypted
media data in accordance with various aspects and implemen-
tations described herein.

FIG. 7 is a block diagram illustrating an example, non-
limiting embodiment of a system for decrypting encrypted
media data in accordance with various aspects and implemen-
tations described herein.

FIG. 8 is an exemplary flow diagram to illustrate a meth-
odology in accordance with various aspects and implemen-
tations described herein.

FIG. 9 is a block diagram illustrating an example comput-
ing device that is arranged in accordance with various aspects
and implementations described herein.

FIG. 10 is a block diagram illustrating an example net-
working environment in accordance with various aspects and
implementations of this disclosure.

US 9,270,456 B1

3
DETAILED DESCRIPTION

Overview

Various aspects of this disclosure are now described with
reference to the drawings, wherein like reference numerals
are used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understand-
ing of one or more aspects. It should be understood, however,
that certain aspects of this disclosure may be practiced with-
outthese specific details, or with other methods, components,
materials, etc. In other instances, well-known structures and
devices are shown in block diagram form to facilitate describ-
ing one or more aspects.

FIG. 1 illustrates an example, non-limiting embodiment of
a system 100 that can receive and present media data. The
system 100 includes a client 102 which can represent a stan-
dalone media playback device. The client 102 includes a
frame monitoring component 110, a generation component
112, a processor 114, an operating system 116, a media stack
118, and a memory/storage 120. The components 110, 112,
114, 116, 118, and 120 are communicably coupled to each
other. The media stack 118 is configured to facilitate playback
of media content. In one embodiment of the present disclo-
sure, a decryption component 124 and the media stack 118
can be integrated into one software program. In another
embodiment of the present disclosure, the frame monitoring
component 110, generation component 112, decryption com-
ponent 124, and the media stack 118 are integrated into a Web
browser, which, in turn, communicates with a media server
104. In still another example of the present disclosure, the
media stack 118 and decryption component 124 are a com-
ponent of the client’s operating system 116 or platform (e.g.
hardware or firmware). In yet another example of the present
disclosure, frame monitoring component 110, generation
component 112, and decryption component 124 can all be
part of the media stack 118.

In one embodiment of the present disclosure, the media
server 104 is located externally to the client 102. The media
server 104 is communicably coupled to the data store 106 that
contains encrypted media content 108 that the media server
104 streams to the client 102. In one embodiment of the
present disclosure, the media server 104 and the client 102 are
located in the same device.

In one embodiment of the present disclosure, the encrypted
media content 108 is stored in the memory/storage 120 of the
client 102 (see 122), and subsequently processed (e.g. played
back) by the frame monitoring component 110, the genera-
tion component 112, decryption component 124 and media
stack 118. In this embodiment, the encrypted media content
122 can be uploaded to storage 120 by way of a user input
device (e.g. compact disk drive) or can be downloaded to
storage 120, e.g., via the media server 104. In one implemen-
tation, the frame monitoring component 110, the generation
component 112, the decryption component 124, and the
media stack 118 can process/playback the encrypted media
content 122 offline (e.g. locally on the client 102 without a
network connection to the media server 104). In another
embodiment of the present disclosure, the encrypted media
content 122 can be processed/played back in real time while
it is being transmitted by the media server 104.

According to an aspect of the present disclosure, the frame
monitoring component 110 is configured to monitor the
encrypted content 122 (e.g. a part of a frame, a frame, or
frames) and to differentiate between encrypted and unen-
crypted portions of the content. According to an aspect of the
present disclosure, the frame monitoring component 110

10

20

25

30

35

40

45

50

55

60

65

4

detects when an initialization vector is prepended to an
encrypted frame. The initialization vector is used in conjunc-
tion with a key to decrypt the encrypted frame to facilitate the
media stack 118 processing the media for playback.

In some aspects of the present disclosure, if the frame
monitoring component 110 determines that there is not an
initialization vector prepended to the encrypted frame, the
generation component 112 is configured to generate a new
initialization vector to be used by the decryption component
124 in decrypting the encrypted frame. The generation com-
ponent 112 can take the last portion of the encrypted frame
preceding the current encrypted frame and use that portion as
the new vector used by the key. In some aspects of the present
disclosure, the generation component 112 can take the last
portion of data of the preceding encrypted frame after it has
been decrypted. The portion selected is equal in size to the
initialization frame. If the preceding encrypted frame is
smaller than the initialization vector size (i.e., there is not
enough data in the encrypted frame to make an initialization
vector), the last byte of the preceding frame is repeated until
the portion selected equals the initialization vector size. This
is explained further below with reference to FIG. 3.

In some embodiments of the present disclosure, the
decryption component 124 is configured to use the prepended
initialization vector that the frame monitoring component
110 detects to decrypt the current encrypted frame. In other
embodiments of the present disclosure, when there is no
prepended initialization vector, the generation component
112 generates a new initialization vector using the last portion
of data from the preceding frame and the decryption compo-
nent 124 uses the new initialization vector to decrypt the
current encrypted frame. This is explained further below with
reference to FIG. 3.

According to an aspect of the present disclosure, the
decryption component 124 and the media stack 118 are com-
municably coupled to a key server 126 to obtain the key that
is required to decrypt the encrypted content 108/122. It is to
be appreciated that in some embodiments, the client 102
already possesses a key to decrypt particular encrypted media
content 108 or 122, for example, in memory/storage 120. In
that scenario, the media stack 118 or decryption component
124 typically does not try to obtain a key from key server 126.
In other embodiments, the frame monitoring component 110
can monitor the encrypted content and determine that an
encrypted frame or set of frames requires a new key. In that
scenario, the media stack 118 or the decryption component
124 typically will try to obtain the key from the key server
126.

In the subject disclosure, the term media stack is used to
refer to a component that is used to de-multiplex, decrypt,
decode and/or render media content. It is to be appreciated
that in some embodiments, the media stack 118 may not
perform the de-multiplexing and/or rendering functions.
Also, the terms key and license are used interchangeably in
the subject disclosure. According to an aspect of the present
disclosure, the frame monitoring component 110, generation
component 112, decryption component 124 and/or the media
stack 118 can be implemented in hardware, firmware or
machine code. In an embodiment of the present disclosure,
the media stack 118 is implemented in a network browser
application (e.g. as a separate application program from the
other components). In such an embodiment, the browser
application itself can be referred herein to as a media stack
118.

FIG. 2 is a block diagram illustrating an example, non-
limiting embodiment of a system 200 for decrypting
encrypted media content 108 or 122 in accordance with vari-

US 9,270,456 B1

5

ous aspects and implementation described herein. Frame
monitoring component 110 is provided to monitor encrypted
frames 202, 206 and 210. Frame monitoring component 110
can detect initialization vectors 204, 208, and 212 that are
prepended to encrypted frames 202, 206 and 210 respectively.
Decryption component 124 can decrypt encrypted frames
202, 206, and 210 using the initialization vectors 204, 208,
and 212, respectively.

It is to be appreciated that while FIG. 2 shows that
encrypted frame 202 is an intra frame, and encrypted frames
206 and 210 as inter frames, any combination of types of
frames and numbers of frames is possible. An intra frame is a
frame upon which compression encoding techniques are per-
formed relative to information that is contained within the
frame itself. An inter frame is a frame that is expressed in
terms of one or more neighboring frames. Inter frame predic-
tion is employed to reduce the number of bytes used to rep-
resent a frame by predicting temporal redundancies between
neighboring frames.

Changing the initialization vector of each frame can
increase security by decreasing the probability that attackers
will be able to infer relationships between ciphertexts and
decrypted data that can potentially allow the encrypted datato
be illegitimately decoded. Prepending the initialization vec-
tor to the encrypted frame signals to the media stack 118 that
the initialization vector has changed, allowing the decryption
component 124 to utilize the appropriate initialization vector
for the encrypted frame.

Turning now to FIG. 3, an exemplary system 300 in which
techniques of the present disclosure can be implemented is
illustrated. In system 300, frame monitoring component 110
monitors encrypted frames 302, 308, 312, and 314. When
monitoring encrypted frame 302, which happens to be an
intra frame in FIG. 3, frame monitoring component 110 can
determine that encrypted frame 302 has a prepended initial-
ization vector 304. Decryption component 124 can then
decrypt the encrypted frame 302 with the initialization vector
304.

Frame monitoring component 110 can then monitor
encrypted frame 308 to determine if an initialization vector is
prepended. When frame monitoring component 110 deter-
mines that encrypted frame 308 does not have a prepended
initialization vector, generation component 112 is configured
to use a last portion of frame 302 as an initialization vector for
encrypted frame 308. In one implementation, generation
component 112 is configured to use a last portion of frame
302 by copying the last portion of frame 302 to be used as the
initialization vector for encrypted frame 308. For example,
generation component 112 can copy the last portion of frame
302 to create initialization vector 306, which can then be used
to facilitate the decryption of encrypted frame 308 by decryp-
tion component 124.

In some aspects of the present disclosure, the preceding
encrypted frame can be smaller than the size of an initializa-
tion vector such that there is not enough data in the decrypted
frame to make an initialization vector. For example, in some
embodiments of the present disclosure, the initialization vec-
tor is sixteen bytes in length. In that case, if the preceding
encrypted frame (e.g., Intra frame 0) is less than sixteen bytes,
the last byte of the decrypted frame can be repeated until the
initialization vector size is reached.

When frame monitoring component 110 determines that
encrypted frame 312 does not have a prepended initialization
vector, generation component 112 can repeat the previous
process, in this instance retrieving/copying/creating initial-
ization vector 310 from the last portion of frame 308. Initial-
ization vector 310 can then facilitate the decryption of

20

40

45

6

encrypted frame 312 by decryption component 124. Frame
monitoring component 110 can determine that encrypted
frame 314 has a prepended initialization vector 316 which can
facilitate the decryption of encrypted frame 314 by decryp-
tion component 124. If a subsequent frame after encrypted
frame 314 does not have a prepended initialization vector, a
lastportion 318 of data from encrypted frame 314 can be used
as or to form the initialization vector for the subsequent
encrypted frame.

In some aspects of the present disclosure, intra frames will
have prepended initialization vectors and inter frames will
use the last portion of data from the preceding frame as the
inter frame’s initialization vector. As playback of a media
stream can begin on an intra frame, a prepended initialization
vector facilitates the decryption of the intra frame, as there are
no previous frames on which an intra frame typically depends
from which to generate an initialization vector. In other
embodiments of the disclosure, some inter frames as well as
intra frames can have prepended initialization vectors.

Turning now to FIGS. 4a and 45, an exemplary system 400
for decrypting encrypted media data is shown. As in FIG. 3,
the frame monitoring component 110 monitors encrypted
frames 402, 410, 416, and 420, but in system 400, the frame
monitoring component 110 is configured to detect whether a
signal byte is prepended to the encrypted frames and if so,
analyze the signal byte. In one implementation, the signal
byte contain 8 bits, with some or all of the bits having defined
roles. For instance, one bit of the signal byte can indicate that
another signal byte prepended to an encrypted frame follows
the initial signal byte. Another bit can indicate that the frame
the signal byte is prepended is encrypted or not. Another bit
can indicate that a key size byte and key data follows the
signal byte. Another bit can indicate whether an initialization
vector is prepended to the encrypted frame. These bits are
referred to herein as the “extension bit”, the “encrypted bit”,
the “key bit”, and the “initialization vector bit” respectively.
In some aspects of the present disclosure, some of the bits can
be undefined.

Frame monitoring component 110 can analyze the signal
byte 404 of encrypted frame 402 to determine the information
that signal byte 404 is signaling based on which of the bits are
activated. For instance, in one implementation, if a bit=1 the
bit is activated and if the bit=0 the bit is not activated. In other
implementations, if a bit=1 the bit is not activated and if the
bit=0 the bit is activated. In FIG. 4a, signal byte 404 has the
encrypted bit and the initialization vector bit activated, indi-
cating that the frame 402 is encrypted, and that initialization
vector 406 follows signal byte 404. Upon analyzing signal
byte 402 by the frame monitoring component 110, decryption
component 124 can decrypt encrypted frame 402 using ini-
tialization vector 406.

Next, frame monitoring component 110 can analyze signal
byte 412 of encrypted frame 410 and determine that only the
encryption bit is activated. This indicates to frame monitoring
component 110 that the encrypted frame 410 is encrypted and
also that there is no initialization vector prepended. In
response, generation component 112 can generate an initial-
ization vector 408 from the last portion of encrypted frame
402. Decryption component 124 can then decrypt encrypted
frame 410 using initialization vector 408. When frame moni-
toring component 110 analyzes signal byte 418 which has the
same bits activated as signal byte 412, the process can be
repeated, and initialization vector 414 can be generated (e.g.,
retrieved, copied, or formed) from the last portion of
encrypted frame 410 and used to decrypt encrypted frame
416.

US 9,270,456 B1

7

Signal byte 422 of encrypted frame 420 has the encrypted
bit and the initialization vector bit activated, alerting frame
monitoring component 110 to the presence of initialization
vector 424 following signal byte 422. Decryption component
can then use initialization vector 424 to facilitate the decryp-
tion of encrypted frame 420.

FIG. 4b illustrates an example embodiment where frame
monitoring component 110 determines that encrypted intra
frames 426 and 434 have signal bytes and encrypted inter
frames 430 and 432 have no signal bytes. Where encrypted
frames have no signal bytes, frame monitoring component
110, generation component 112 and decryption component
124 can operate as in FIG. 3.

FIG. 5 illustrates an exemplary embodiment of a system
500 in accordance with the present disclosure. Frame moni-
toring component 110 can detect the presence of and analyze
signal bytes prepended to encrypted frames 502, 504, 506,
and 508. In FIG. 5, the frame monitoring component 110,
generation component 112 and decryption component 124
perform the same operations for encrypted frames 502, 504,
and 506 as in FI1G. 4 previously. Signal byte 510 can indicate
to frame monitoring component 110 thatkey data and/or akey
size byte is included after signal byte 510.

When the key bit of a signal byte (e.g., signal byte 510) is
activated, that can indicate to the frame monitoring compo-
nent 110 that a new key is needed to decrypt encrypted frame
508. In some aspects of the present disclosure, the key data
block 512 can include the actual key. In other embodiments of
the present disclosure, the key size and/or key data block 512
can be identifying information that client 102 can utilize to
access a new key from a key server 126. Transmitting the key
to the client 102 from key server 126 separate from the
encrypted data can increase the security of the encrypted data.
Once the new key is received, the decryption component 124
can use the initialization vector 514 and the new key to
decrypt encrypted frame 508.

Turning now to FIG. 6, an exemplary embodiment of a
system 600 in accordance with the present disclosure is illus-
trated. In FIG. 6, frame monitoring component 110 can detect
the presence of and analyze signal bytes prepended to frames
602, 606, 610, and 616. In some aspects of the present dis-
closure, one or more of the frames can be unencrypted. When
this occurs, the signal byte prepended to the unencrypted
frame can indicate that the frame is not encrypted. For
example, when frame monitoring component 110 analyzes
signal bytes 604 and 608 of frames 602 and 606, frame
monitoring component 110 can determine that the encrypted
bit of signal bytes 604 and 608 are not activated, and so
decryption component 124 will not attempt to decrypt those
frames before the media stack 118 processes them. Addition-
ally, frame monitoring component 110 will not monitor for
initialization vectors when it receives information that the
frames are not encrypted. Alternatively, if frame monitoring
component 110 receives information that the frames are
encrypted, it will monitor the signal bytes to detect initializa-
tion vectors.

Signal bytes 612 and 618 have activated encrypted bits and
initialization vector bits, indicating that initialization vectors
614 and 620 follow signal bytes 612 and 618, respectively.
Decryption component 124 can use initialization vectors 614
and 620 to decrypt encrypted frames 610 and 616.

Turning now to FIG. 7, an exemplary embodiment of a
system 700 in accordance with the present disclosure is illus-
trated. In FIG. 7, frame monitoring component 110 can detect
the presence of and analyze signal bytes prepended to
encrypted frames 702 and 714. When frame monitoring com-
ponent analyzes signal byte 704 of encrypted frame 702, it

20

25

35

40

45

8

can determine that the extension bit, encrypted bit, and ini-
tialization vector bit are activated, indicating that there is an
additional signal byte 706 following signal byte 704, and
there is also an initialization vector prepended to the
encrypted frame following the signal bytes. Signal byte 706
can also have an extension bit activated indicating that signal
byte 708 is present. Additional signal bytes can be used for
future expansion of capabilities and signaling. Decryption
component 124 can then decrypt encrypted frame 702 using
initialization vector 710 that follows signal byte 708.

Frame monitoring component 110 can also analyze signal
bytes 716, 718, and 720 in turn, none of which indicate the
presence of an initialization vector. Generation component
112 can then generate (e.g., retrieve, copy or form) initializa-
tion vector 712 from the last portion of data from encrypted
frame 702. Decryption component 124 can decrypt encrypted
frame 714 using initialization vector 712.

FIG. 8 illustrates an exemplary flow diagram 800 for a
methodology according to an aspect of the present disclosure.
For simplicity of explanation, the method is depicted and
described as a series of acts. However, acts in accordance with
this disclosure can occur in various orders and/or concur-
rently, and with other acts not presented and described herein.
Furthermore, not all illustrated acts may be required to imple-
ment the method in accordance with the disclosed subject
matter. In addition, those skilled in the art will understand and
appreciate that the method could alternatively be represented
as a series of interrelated states via a state diagram or events.
Additionally, it should be appreciated that the methods dis-
closed in this specification are capable of being stored on an
article of manufacture to facilitate transporting and transfer-
ring such methods to computing devices. The term article of
manufacture, as used herein, is intended to encompass a com-
puter program accessible from any computer-readable device
or storage media.

Moreover, various acts have been described in detail above
in connection with respective system diagrams. It is to be
appreciated that the detailed description of such acts in the
prior figures can be and are intended to be implementable as
methods and/or in accordance with the following depicted
method.

At 802, a frame monitoring component (e.g. 110) monitors
(e.g., checks) an encrypted frame to detect whether the
encrypted frame has an initialization vector prepended to the
encrypted frame. At 804, a generation component (e.g. 112)
generates a new initialization vector from a last portion of
data of a previous frame in response to not detecting the
prepended initialization vector. In some aspects of the present
disclosure, the last portion of data can be decrypted before
being retrieved or copied to create a new initialization vector.
In one embodiment, if the previous encrypted frame is
smaller than the initialization vector size, a last byte (or a
number of last bytes) of the previous frame can be copied
until the size of the initialization vector is reached.

At 806, a decryption component (e.g. 124) can decrypt the
encrypted frame with the initialization vector that was
prepended to the encrypted frame in response to detecting the
initialization vector. At 808, a decryption component (e.g.
124) can decrypt the encrypted frame with the new initializa-
tion vector that was created by the generation component at
804.

Exemplary Computing Device

With reference to FIG. 9, a suitable environment 900 for
implementing various aspects of this disclosure includes a
computing device 912. The computing device 912 includes a
processing unit(s) 914, a system memory 916, and a system
bus 918. The system bus 918 couples system components

US 9,270,456 B1

9

including, but not limited to, the system memory 916 to the
processing unit 914. The processing unit(s) 914 can be any of
various available processors. Dual microprocessors and other
multiprocessor architectures also can be employed as the
processing unit(s) 914.

The system bus 918 can be any of several types of bus
structure(s) including the memory bus or memory controller,
a peripheral bus or external bus, and/or a local bus using any
variety of available bus architectures including, but not lim-
ited to, Industrial Standard Architecture (ISA), Micro-Chan-
nel Architecture (MSA), Extended ISA (EISA), Intelligent
Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral
Component Interconnect (PCI), Card Bus, Universal Serial
Bus (USB), Advanced Graphics Port (AGP), Personal Com-
puter Memory Card International Association bus (PCM-
CIA), Firewire (IEEE 994), and Small Computer Systems
Interface (SCSI).

The system memory 916 includes volatile memory 920 and
nonvolatile memory 922. The basic input/output system
(BIOS), containing the basic routines to transfer information
between elements within the computing device 912, such as
during start-up, is stored in nonvolatile memory 922. By way
of illustration, and not limitation, nonvolatile memory (e.g.,
922) can include read only memory (ROM), programmable
ROM (PROM), electrically programmable ROM (EPROM),
electrically erasable programmable ROM (EEPROM), flash
memory, or nonvolatile random access memory (RAM) (e.g.,
ferroelectric RAM (FeRAM). Volatile memory (e.g., 920)
includes random access memory (RAM), which acts as exter-
nal cache memory. By way of illustration and not limitation,
RAM is available in many forms such as static RAM
(SRAM), dynamic RAM (DRAM), synchronous DRAM
(SDRAM), double data rate SDRAM (DDR SDRAM),
enhanced SDRAM (ESDRAM), Synchlink DRAM
(SLDRAM), direct Rambus RAM (DRRAM), direct Rambus
dynamic RAM (DRDRAM), and Rambus dynamic RAM.
Additionally, the disclosed memory components of systems
or methods herein are intended to include, without being
limited to including, these and any other suitable types of
memory.

Computing device 912 can also include removable/non-
removable, volatile/non-volatile computer storage media.
FIG. 9 illustrates, for example, a disk storage 924. Disk stor-
age 924 includes, but is not limited to, devices like a magnetic
disk drive, flash drive, floppy disk drive, tape drive, Jaz drive,
Zip drive, L.S-100 drive, flash memory card, or memory stick.
The disk storage 924 also can include storage media sepa-
rately or in combination with other storage media including,
but not limited to, an optical disk drive such as a compact disk
ROM device (CD-ROM), CD recordable drive (CD-R Drive),
CD rewritable drive (CD-RW Drive) or a digital versatile disk
ROM drive (DVD-ROM). To facilitate connection of the disk
storage devices 924 to the system bus 918, a removable or
non-removable interface is typically used, such as interface
926.

FIG. 9 also depicts software that acts as an intermediary
between users and the basic computer resources described in
the suitable operating environment 900. Such software
includes, for example, an operating system 928. Operating
system 928, which can be stored on disk storage 924, acts to
control and allocate resources of the computing device 912.
System applications 930 take advantage of the management
of resources by operating system 928 through program mod-
ules 932 and program data 934, e.g., stored either in system
memory 916 or on disk storage 924. It is to be appreciated that
this disclosure can be implemented with various operating
systems or combinations of operating systems.

10

15

20

25

30

35

40

45

50

55

60

65

10

A user enters commands or information into the computing
device 912 through input device(s) 936. Input devices 936
include, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, and the
like. These and other input devices connect to the processing
unit 914 through the system bus 918 via interface port(s) 938.
Interface port(s) 938 include, for example, a serial port, a
parallel port, a game port, and a universal serial bus (USB).
Output device(s) 940 use some of the same type of ports as
input device(s) 936. Thus, for example, a USB port may be
used to provide input to computing device 912, and to output
information from computing device 912 to an output device
940. Output adapter 942 is provided to illustrate that there are
some output devices 940 like monitors, speakers, and print-
ers, among other output devices 940, which require special
adapters. The output adapters 942 include, by way of illus-
tration and not limitation, video and sound cards that provide
a means of connection between the output device 940 and the
system bus 918. It should be noted that other devices and/or
systems of devices provide both input and output capabilities
such as remote computer(s) 944.

Computing device 912 can also include a decrypter/en-
crypter 956, a demuxer/muxer 954, and a decoder/encoder
952. In some embodiments of the present disclosure, the
demuxer 954 separates media content received from a media
server into its pre-multiplexed components and forwards it to
the decrypter 956. The decrypter 956 provides the decrypted
content (or, in some embodiments, original content in case the
original content was not encrypted) to the decoder 952. The
decoder 952 decodes the media content and in some embodi-
ments forwards it to output adapter 942 for rendering.

Computing device 912 can operate in a networked envi-
ronment using logical connections to one or more remote
computers, such as remote computer(s) 944. The remote
computer(s) 944 can be a personal computer, a server, a
router, a network PC, a workstation, a microprocessor based
appliance, a peer device or other common network node and
the like, and typically includes many or all of the elements
described relative to computing device 912. For purposes of
brevity, only a memory storage device 946 is illustrated with
remote computer(s) 944. Remote computer(s) 944 is logi-
cally connected to computing device 912 through a network
interface 948 and then physically connected via communica-
tion connection 950. Network interface 948 encompasses
wire and/or wireless communication networks such as local-
area networks (LAN), wide-area networks (WAN), cellular
networks, etc. LAN technologies include Fiber Distributed
Data Interface (FDDI), Copper Distributed Data Interface
(CDDI), Ethernet, Token Ring and the like. WAN technolo-
gies include, but are not limited to, point-to-point links, cir-
cuit switching networks like Integrated Services Digital Net-
works (ISDN) and variations thereon, packet switching
networks, and Digital Subscriber Lines (DSL).

Communication connection(s) 950 refers to the hardware/
software employed to connect the network interface 948 to
the bus 918. While communication connection 950 is shown
for illustrative clarity inside computing device 912, it can also
be external to computing device 912. The hardware/software
necessary for connection to the network interface 948
includes, for exemplary purposes only, internal and external
technologies such as, modems including regular telephone
grade modems, cable modems and DSL. modems, ISDN
adapters, Ethernet cards, and wireless networking cards.

In accordance with various aspects and implementations,
the computing device 912 can be used to identify initializa-

US 9,270,456 B1

11

tion vectors prepended to encrypted frames and generate new
initialization vectors for frames without prepended initializa-
tion vectors and decrypt the encrypted frames with the ini-
tialization vectors. As more fully disclosed herein, in some
implementations, the computing device 912 can include one
or more processors (e.g., processing units 114, 914) that can
be used to process data, including processing data to perform
various tasks (e.g., monitoring encrypted frames, detecting
prepended initialization vectors, generating new initializa-
tion vectors, decrypting the encrypted frames, etc.). The com-
puting device 912 can include a program component 905 that
can be associated with (e.g., communicatively connected to)
the one or more processors. The program component 905 can
contain, for example, a frame monitoring component, a gen-
eration component, a decryption component and/or other
components, which can respectively function as more fully
disclosed herein, to facilitate decrypting encrypted media
content with changing initialization vectors.

Exemplary Networked and Distributed Environments

FIG. 10 is a schematic block diagram of a sample-comput-
ing environment 1000 in accordance with implementations of
this disclosure. The system 1000 includes one or more
client(s) 1010. The client(s) 1010 can be hardware and/or
software (e.g., threads, processes, computing devices). The
system 1000 also includes one or more server(s) 1030. Thus,
system 1000 can correspond to a two-tier client server model
or a multi-tier model (e.g., client, middle tier server, data
server), amongst other models. The server(s) 1030 can also be
hardware and/or software (e.g., threads, processes, comput-
ing devices). The servers 1030 can house threads to perform
transformations by employing this disclosure, for example.
One possible communication between a client 1010 and a
server 1030 may be in the form of a data packet transmitted
between two or more computer processes.

The system 1000 includes a communication framework
1050 that can be employed to facilitate communications
between the client(s) 1010 and the server(s) 1030. The
client(s) 1010 are operatively connected to one or more client
data store(s) 1020 that can be employed to store information
local to the client(s) 1010. Similarly, the server(s) 1030 are
operatively connected to one or more server data store(s)
1040 that can be employed to store information local to the
servers 1030.

It is to be appreciated and understood that components, as
described with regard to a particular system or method, can
include the same or similar functionality as respective com-
ponents (e.g., respectively named components or similarly
named components) as described with regard to other sys-
tems or methods disclosed herein.

It is to be noted that aspects or features of this disclosure
can be used with substantially any wireless telecommunica-
tion or radio technology, e.g., Wi-Fi; Bluetooth; Worldwide
Interoperability for Microwave Access (WiMAX); Enhanced
General Packet Radio Service (Enhanced GPRS); Third Gen-
eration Partnership Project (3GPP) Long Term Evolution
(LTE); Third Generation Partnership Project 2 (3GPP2) Ultra
Mobile Broadband (UMB); 3GPP Universal Mobile Tele-
communication System (UMTS); High Speed Packet Access
(HSPA); High Speed Downlink Packet Access (HSDPA);
High Speed Uplink Packet Access (HSUPA); GSM (Global
System for Mobile Communications) EDGE (Enhanced Data
Rates for GSM Evolution) Radio Access Network (GERAN);
UMTS Terrestrial Radio Access Network (UTRAN); LTE
Advanced (LTE-A); etc. Additionally, some or all of the
aspects described herein can be used with legacy telecommu-
nication technologies, e.g., GSM. In addition, mobile as well
non-mobile networks (e.g., the Internet, data service network

10

15

20

25

30

35

40

45

50

55

60

65

12

such as internet protocol television (IPTV), etc.) can be used
with aspects or features described herein.

While the subject matter has been described above in the
general context of computer-executable instructions of a
computer program that runs on a computer and/or computers,
those skilled in the art will recognize that this disclosure also
can or may be implemented in combination with other pro-
gram modules. Generally, program modules include routines,
programs, components, data structures, etc. that perform par-
ticular tasks and/or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
inventive methods may be practiced with other computer
system configurations, including single-processor or multi-
processor computer systems, mini-computing devices, main-
frame computers, as well as personal computers, hand-held
computing devices (e.g., PDA, phone), microprocessor-
based or programmable consumer or industrial electronics,
and the like. The illustrated aspects may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. However, some, if not all aspects
of'this disclosure can be practiced on stand-alone computers.
In a distributed computing environment, program modules
may be located in both local and remote memory storage
devices.

As used in this application, the terms “component,” “sys-
tem,” “platform,” “interface,” and the like, can refer to and/or
can include a computer-related entity or an entity related to an
operational machine with one or more specific functional-
ities. The entities disclosed herein can be either hardware, a
combination of hardware and software, software, or software
in execution. For example, a component may be, but is not
limited to being, a process running on a processor, a proces-
sor, an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application
running on a server and the server can be a component. One or
more components may reside within a process and/or thread
of'execution and a component may be localized on one com-
puter and/or distributed between two or more computers.

In another example, respective components can execute
from various computer readable media having various data
structures stored thereon. The components may communicate
via local and/or remote processes such as in accordance with
a signal having one or more data packets (e.g., data from one
component interacting with another component in a local
system, distributed system, and/or across a network such as
the Internet with other systems via the signal). As another
example, a component can be an apparatus with specific
functionality provided by mechanical parts operated by elec-
tric or electronic circuitry, which is operated by a software or
firmware application executed by a processor. In such a case,
the processor can be internal or external to the apparatus and
can execute at least a part of the software or firmware appli-
cation. As yet another example, a component can be an appa-
ratus that provides specific functionality through electronic
components without mechanical parts, wherein the electronic
components can include a processor or other means to
execute software or firmware that confers at least in part the
functionality of the electronic components. In an aspect, a
component can emulate an electronic component via a virtual
machine, e.g., within a cloud computing system.

In addition, the term “or” is intended to mean an inclusive
“or” rather than an exclusive “or.” That is, unless specified
otherwise, or clear from context, “X employs A or B” is
intended to mean any of the natural inclusive permutations.
That is, if X employs A; X employs B; or X employs both A
and B, then “X employs A or B” is satisfied under any of the

29 <

US 9,270,456 B1

13

foregoing instances. Moreover, articles “a” and “an” as used
in the subject specification and annexed drawings should
generally be construed to mean “one or more” unless speci-
fied otherwise or clear from context to be directed to a singu-
lar form.

As used herein, the terms “example” and/or “exemplary”
are utilized to mean serving as an example, instance, or illus-
tration. For the avoidance of doubt, the subject matter dis-
closed herein is not limited by such examples. In addition, any
aspect or design described herein as an “example” and/or
“exemplary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs, nor is it meant to
preclude equivalent exemplary structures and techniques
known to those of ordinary skill in the art.

Reference throughout this specification to “one implemen-
tation,” or “an implementation,” or “one embodiment,” or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the implementa-
tion or embodiment is included in at least one implementation
or one embodiment. Thus, the appearances of the phrase “in
one implementation,” or “in an implementation,” or “in one
embodiment,” or “in an embodiment” in various places
throughout this specification can, but are not necessarily,
referring to the same implementation or embodiment,
depending on the circumstances. Furthermore, the particular
features, structures, or characteristics may be combined in
any suitable manner in one or more implementations or
embodiments.

Various aspects or features described herein can be imple-
mented as a method, apparatus, system, or article of manu-
facture using standard programming or engineering tech-
niques. In addition, various aspects or features disclosed in
this disclosure can be realized through program modules that
implement at least one or more of the methods disclosed
herein, the program modules being stored in a memory and
executed by at least a processor. Other combinations of hard-
ware and software or hardware and firmware can enable or
implement aspects described herein, including a disclosed
method(s). The term “article of manufacture” as used herein
can encompass a computer program accessible from any
computer-readable device, carrier, or storage media. For
example, computer readable storage media can include but
are not limited to magnetic storage devices (e.g., hard disk,
floppy disk, magnetic strips . . .), optical discs (e.g., compact
disc (CD), digital versatile disc (DVD), blu-ray disc
(BD)...), smart cards, and flash memory devices (e.g., card,
stick, key drive . . .), or the like.

As it is employed in the subject specification, the term
“processor” can refer to substantially any computing process-
ing unit or device comprising, but not limited to, single-core
processors; single-processors with software multithread
execution capability; multi-core processors; multi-core pro-
cessors with software multithread execution capability;
multi-core processors with hardware multithread technology;
parallel platforms; and parallel platforms with distributed
shared memory. Additionally, a processor can refer to an
integrated circuit, an application specific integrated circuit
(ASIC), a digital signal processor (DSP), a field program-
mable gate array (FPGA), a programmable logic controller
(PLC), a complex programmable logic device (CPLD), a
discrete gate or transistor logic, discrete hardware compo-
nents, or any combination thereof designed to perform the
functions described herein. Further, processors can exploit
nano-scale architectures such as, but not limited to, molecular
and quantum-dot based transistors, switches and gates, in
order to optimize space usage or enhance performance ofuser

10

15

20

25

30

35

40

45

50

55

60

65

14

equipment. A processor may also be implemented as a com-
bination of computing processing units.

In this disclosure, terms such as “store,” “storage,” “data
store,” data storage,” “database,” and substantially any other
information storage component relevant to operation and
functionality of a component are utilized to refer to “memory
components,” entities embodied in a “memory,” or compo-
nents comprising a memory. It is to be appreciated that
memory and/or memory components described herein can be
either volatile memory or nonvolatile memory, or can include
both volatile and nonvolatile memory.

What has been described above includes examples of sys-
tems and methods of this disclosure. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methods for purposes of describing this disclosure,
but one of ordinary skill in the art may recognize that many
further combinations and permutations of this disclosure are
possible. Furthermore, to the extent that the terms “includes,”
“has,” “possesses,” and the like are used in the detailed
description, claims, appendices and drawings such terms are
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

What is claimed is:

1. A system comprising:

a memory that has stored thereon computer executable

components; and

a processor that executes the following computer execut-

able components stored in the memory:

a frame monitoring component that monitors a frame to
determine if a signal byte is prepended to the frame,
wherein bits in the signal byte indicate information
about the frame comprising information about
whether the frame is encrypted and information about
whether an initialization vector follows the signal
byte;

a generation component that generates the initialization
vector in response to the signal byte indicating that
there is an encrypted frame and no initialization vec-
tor following the signal byte; and

a decryption component that uses the initialization vec-
tor to decrypt the encrypted frame.

2. The system of claim 1, wherein size of the initialization
vector is sixteen bytes.

3. The system of claim 1, wherein the generation compo-
nent appends a last byte of a preceding encrypted frame one or
more times to an end of a portion of data to form the initial-
ization vector.

4. The system of claim 3, wherein the portion of data is a
size of the previous frame and, if the size of the preceding
encrypted frame is smaller than the predetermined size, the
generation component appends a last byte of the preceding
encrypted frame one or more times to an end of the portion of
data to form the initialization vector having a predetermined
size.

5. The system of claim 1, wherein bits in the signal byte
indicate that an additional signal byte follows the signal byte
and that key data follows the signal byte.

6. The system of claim 5, wherein the key data is used to
obtain a new key from a key server.

7. The system of claim 1, wherein the frame monitoring
component determines if the encrypted frame is an intra
frame or an inter frame.

8. The system of claim 7, wherein the frame monitoring
component determines that the initialization vector is
prepended to the encrypted frame in response to determining
that the encrypted frame is an intra frame.

29 <

US 9,270,456 B1

15

9. The system of claim 7, wherein the frame monitoring
component determines that the encrypted frame is an intra
frame or an inter frame based on bits in the signal byte.

10. The system of claim 7, wherein the generation compo-
nent generates the initialization vector from the portion of
data from the previous encrypted frame in response to the
frame monitoring component determining that the encrypted
frame is an inter frame.

11. The system of claim 1, wherein the frame monitoring
component monitors signal bytes of a series of frames to
detect an initialization vector in response to receiving infor-
mation that one of the series of frames is encrypted.

12. A method comprising:

employing a processor that facilitates execution of com-

puter executable instructions stored on a non-transitory

computer readable medium to implement operations,

comprising:

monitoring a frame to determine if a signal byte is
attached to the frame, wherein bits in the signal byte
provide information about the frame, wherein the
information about the frame comprises information
about whether the frame is encrypted and information
about whether an initialization vector is prepended to
the framed;

generating the initialization vector in response to the
signal byte indicating that the frame is an encrypted
frame and that the initialization vector is not
prepended to the frame; and

decrypting the encrypted frame with the initialization
vector.

13. The method of claim 12, appending a last byte of a
preceding encrypted frame one or more times to an end of a
portion of data to form the initialization vector.

14. The method of claim 12, analyzing the signal byte to
identify data that is prepended to the encrypted frame.

25

30

16

15. The method of claim 12, obtaining a key from a key
server using key data in response to identifying that key data
is prepended to the signal byte.

16. The method of claim 12, further comprising: determin-
ing whether the encrypted frame is an intra frame or an inter
frame based on bits in the signal byte.

17. The method of claim 12, monitoring signal bytes of a
series of frames to detect an initialization vector in response
to receiving information that one of the series of frames is
encrypted.

18. The method of claim 12, further comprising: determin-
ing whether the encrypted frame is an intra frame or an inter
frame.

19. The method of claim 18, further comprising: monitor-
ing for the initialization vector prepended to the encrypted
frame in response to determining that the encrypted frame is
an intra frame.

20. A non-transitory computer readable storage medium
comprising computer-executable instructions, that in
response to execution, cause a computing system to perform
operations, comprising:

monitoring a frame to determine if a signal byte is

prepended to the frame, wherein bits in the signal byte
provide information about the frame, wherein the infor-
mation about the frame comprises information about
whether the frame is encrypted and information about
whether an initialization vector is prepended to the
framed,;

generating the initialization vector in response to the signal

byte indicating that the frame is an encrypted frame and
that the initialization vector is not prepended to the
frame; and

decrypting the encrypted frame with the initialization vec-

tor.

